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a b s t r a c t

Though lightweight sandwich structures have been extensively applied in practical
engineering, it remains a challenge to control wave propagation and vibration in these
structures in a low-frequency range. In this work, the band structure of flexural waves in
a metamaterial sandwich beam (MSB) with hourglass lattice truss core is investigated
using the transfer matrix method (TMM). The hourglass truss structure with lumped
masses is modelled as a series of local resonators with determined equivalent stiffnesses
and masses. A metamaterial dual-beam (MDB) model is then established to describe the
MSB, and the MDB model is noted to be equivalent to the conventional metamaterial
beam (CMB) model under base excitation. The MSB is further studied directly by the
finite element method that confirmed the MSB can be represented by the CMB through
the transmittance analysis and band structure analysis. Subsequently, parametric study
is performed to investigate the effects of the material and structural parameters on the
band structures of the MSB. This work provides a roadmap of modelling of lightweight
lattice sandwich beams with complex core structures and presents guidelines for
applying sandwich beams to control wave propagation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Metamaterials are artificial periodic structures that can generate band gaps that are frequency ranges within which
he propagation of waves is forbidden [1–7]. Because of this intriguing phenomenon, extensive research interests have
een attracted into exploring the theory and applications of metamaterials in wave attenuation and vibration control.
here exist two basic band gap generation mechanism, i.e., Bragg scattering (BS) [8–10] and local resonance (LR) [11,12].
S exists in phononic crystal and the band gap occurs in the frequency range where wavelengths are of the same order
f magnitude as the lattice constant. Thus, a large lattice constant is required to attenuate low-frequency waves, which
s often not realistic in the design of practical engineering structures. Different from phononic crystals, based on the local
esonance mechanism, metamaterials could easily generate a low-frequency band gap. Therefore, enormous efforts have
een devoted to studying and tailoring band gaps of metamaterials.
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As well-known that lots of engineering structures, such as bridges [13], spacecraft arms [14] and building frames [15]
can often be modelled as flexible beams, if the transverse dimension is much smaller than the longitudinal dimension.
The terminology ‘beam’ implies that the structure is relatively thin and the transverse modes occur at lower frequencies
than longitudinal modes. For this reason, in the low-frequency domain, the transverse vibration of a beam-like structure
has a more significant effect on the structural safety and stability. Hence, significant attention has been given to study
the transverse vibration of beams [16–18]. In recent years, some researchers focused on using metamaterials for low-
frequency flexural wave attenuation of continuous systems. By using the transfer matrix method (TMM), Yu et al. [11,19]
researched the flexural wave attenuation of LR beams, in which the local resonators were made up of soft rubber rings
and copper rings. Xiao et al. [20] investigated the band gap formation mechanism with an analytical method on basis
of the periodic structure theory and spectral element method. In order to broaden the width of the band gap, periodic
local resonators arrays with different resonant frequencies were designed and studied [21,22]. Another way to achieve
a wide band gap is to construct a resonator with multiple degrees of freedom (DOF). Pai et al. [23,24] proposed a two-
DOF subsystem to be attached to the beam and plate for inducing two band gaps. The inertial force produced by the
resonance of the absorber enhances the wave attenuation. Wang et al. [25,26] theoretically and numerically studied
flexural vibration of a metamaterial beam and plate with attached lateral local resonators. They found it could generate
two band gaps to attenuate the flexural vibration, for which the formation mechanism is due to the transition from
the flexural wave to longitudinal wave by a four-link-mechanism, which stimulates the lateral resonance to generate
inertial force to counterbalance the shear force of the plate. Miranda Jr. et al. [27] studied flexural waves propagation
in a metamaterial plate using Kirchhoff–Love theory, and found that by changing the arrays of multiple DOF resonators,
the locally resonant band gaps could be effectively widened. By combining auxeticity and phononic crystals band gap
properties, D’Alessandro et al. [28] obtained a tunable wide band gap in numerical and analytical models. On the other
hand, some researchers installed piezoelectric shunts periodically on host structures as adjustable resonators to control
vibration and wave propagation [29–31].

In addition to widening the band gaps, many researchers poured attention into achieving band gaps in low or ultra-
low-frequency range. Since the band gap location of LR metamaterial beam mainly depends on the natural frequency of
resonators, to achieve low-frequency band gap, one has to increase the mass or decrease the stiffness of the resonators. The
concept of inertial amplification is proposed by Yilmaz et al. [32] to embed the amplification mechanism into the unit
cell, which could effectively increase the inertia of resonators and reduce the resonance frequency. Assouar et al. [33]
presented hybrid metamaterial plates that consisted of periodic stepped pillars and holes, in which the waves scattered
simultaneously by the pillars and holes in certain frequency ranges generate wide and low band gaps. Zhou et al. [34]
presented a novel resonator which combines a vertical spring with two oblique springs that provide negative stiffness
in vertical direction, and found the band gap could be shifted into very low frequencies by tuning the stiffness of the
oblique springs. D’Alessandro et al. [35] presented a novel 3D elastic periodic structure with a distributed set of local
resonators to realize low-frequency band gaps. Fang et al. [36] unveiled the nonlinear chaotic mechanism in nonlinear
acoustic metamaterials (NAMs) for achieving band gaps and chaotic bands in an ultra-low and ultra-broad frequency
range.

In past decades, many researchers focused on the dynamics of sandwich structures [37–41], because sandwich struc-
tures with high strength and low weight are ideal solutions to realize lightweight characteristics in practical applications
for bearing large bending load. In order to reduce the possibility of catastrophic accidents caused by vibration, it is
necessary to control the vibration levels of the sandwich structures. Relative to the traditional active [42] and passive [43]
vibration control methods, as well as Bragg scattering metamaterial [44], the metamaterial theory could generate and
tune band gaps to attenuate the flexural wave in specific low-frequency ranges. Chen et al. [45,46] investigated flexural
vibration behaviour of a sandwich beam with local resonators embedded into foam cores analytically and experimentally.
It is assumed that resonators were uniformly distributed along the sandwich beam with the volume averaging technique.
Their proposed model, however, did not account for the effect of the periodicity of discrete resonators on band structures
of the sandwich system. Based on this work, Sharma and Sun [47] used the phased array method to calculate propagation
constants of a sandwich beam with resonators inserted into the core layer, concluding a more clear explanation for the
effect of periodicity of resonators on flexural vibration of the sandwich beam. Furthermore, Chen and Huang [48] proposed
a sandwich structure embedded with multiple resonators that can generate a plurality of band gaps with excellent wave
attenuation characteristics. Nevertheless, widths of band gaps for the proposed single resonator or multiple resonators
sandwich structures are still relatively narrow, which cannot completely satisfy the requirement of practical applications
such as the blast- or impact-induced wave in which the frequency ranges tend to be quite broad. For this reason, Chen
et al. [49] added the dissipative multiple resonators to the core layer of sandwich beams to achieve a wide wave absorption
band efficiently.

Though some literature has been published on wave attenuation of sandwich structures, most of them inserted
lumped mass–spring resonators into the idealized homogenized core [45–49]. Thus, the proposed systems are not realistic
especially in terms of the implementation of the resonators. Other researchers proposed some practical meta-structures
designed with complicated micro-structures and manufactured using 3D printing technology [7,35]. However, the
proposed structures are relatively arbitrary. Though excellent dynamic properties are achieved in the proposed structures,
the static properties which are also of great importance in the engineering field [50–52] can not be guaranteed. For
this reason, based on the sandwich beam with hourglass truss structure whose static properties have already been
2
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xperimentally studied and proved to outperform those with traditional lattice cores [53–55], such as the hourglass truss
tructure with relative density ranging from about 1.1% to 2.7% has 40%–60% higher shear strength and 26%–47% higher
ut-of-plane compressive strength than those of the pyramidal truss structure with similar relative density, as well as
etter bending strength. This paper proposes a novel metamaterial sandwich structure to realize wave attenuation in a
ow-frequency range. The hourglass truss structure is made up of eight struts. It is similar to a two-layer pyramidal truss
tructure but has a smaller slenderness ratio and a superior resistance to the buckling of the core layer. The oblique struts
n the hourglass core sandwich beam are readily used as the springs for implementing the local resonators, making the
roposed meta-structure relatively more realistic. Besides of the novel structure, from the methodology perspective, the
odel presented in this work simplifies the oblique struts as vertical springs to help reduce the difficulty in mathematical
odelling.
Researchers have investigated the dynamic behaviour of such structures [56,57], however, designing the hourglass

ore sandwich beam with a metamaterial characteristic for vibration suppression has never been found in the existing
iterature. In this work, we develop a novel approach to establish the model of the metamaterial sandwich beam with
ourglass core and investigate its band gap phenomenon. A lumped mass is added on the intersection of the eight
blique struts for the hourglass structure unit cell to assemble a resonator, in which the oblique struts provide elastic
tiffness in vertical direction. The equivalent stiffness of the hourglass truss structure is obtained by using Hook’s law.
he metamaterial sandwich beam (MSB) is then simplified into a metamaterial dual-beam (MDB), which can eventually
e modelled as a conventional metamaterial beam (CMB) under base excitation. The feasibility of using the simplified
MB model to represent MSB is validated based on both transmittance and band structure analysis for the MSB using
inite element method (FEM). The effects of material and structural parameters on the band structures of MSB are then
tudied.

. Theoretical modelling

The relatively complicated lattice core structure imposes a great difficulty on the modelling of the metamaterial
andwich beam (MSB). This research aims to propose an easily implementable modelling approach to address this
ssue by interpreting the hourglass lattice core structure as an equivalent mass–spring system. In the field of composite
tructures and materials, it is often assumed that the lattice core has negligible influence on the bending stiffness and
nly contributes to the shear stiffness of the sandwich beam [42]. It is thus reasonable to assume that at the conjunction
etween the truss core and the face sheets only the transverse force interaction is present. Therefore, we propose to
egard the truss structure as a series of local resonators which also only has the transverse force interaction with the
ost beam. In this section, the equivalent stiffness of the resonators is derived. Subsequently, a metamaterial dual-beam
MDB) model is established to describe the MSB. Under base excitation, the MDB model is then noted to be equivalent to
he conventional metamaterial beam (CMB) model. The MSB with complicated truss core structure is finally modelled as
he CMB with derived equivalent parameters.

.1. Equivalent stiffness of the hourglass truss structure

In this section, the equivalent stiffness of the hourglass truss structure is derived basing on Hook’s law. Fig. 1 shows
he hourglass lattice truss structure that consists of eight identical oblique struts with radius and length of rc and l,
espectively, as well as a lumped mass m. The height of the hourglass lattice structure , i.e., the distance between the
wo face sheets, is hc . The inclination angle of the truss denoted by α and the span of one hourglass unit cell (i.e., lattice
onstant) denoted by a are related by a = hc /tan α. The Young’s modulus and mass density of the mother material are E
nd ρ, respectively. A lumped mass denoted by m is added on the intersection of the eight symmetrical oblique struts. Due
o symmetry of the structure, only four struts in one plane are depicted in Fig. 2(a). It is noted the equivalent stiffness
’ of the two struts presented in Fig. 2(a) is only quarter of that of the whole hourglass truss core structure. Fig. 2(b)
hows the equivalent lumped parameter representation of the four strut structure. The equivalent stiffness of the whole
ourglass core structure with eight struts should be 4k’.
As shown in Fig. 2(a), the planar four strut structure intersects at point H and the four struts are all inclined at the

same angle of α with respect to the horizontal. With a vertical concentrated force F applied at H, the intersection point
oves to H’. Considering the force balance in x- and y-directions, one obtains

FHC · cosα − FHB · cosα + FHD · cosα − FHE · cosα = 0

FHB · sinα + FHC · sinα + FHD · sinα + FHE · sinα = F
(1)

here FHB, FHC , FHD, FHE are the axial forces of the four struts, respectively. Due to the symmetry of the four struts, the
xial forces in the four struts are supposed to be the same and can be derived from Eq. (1)

FHB = FHC = FHD = FHE =
F

4 sinα
(2)

Under the small deformation assumption, the axial deformation of the four struts (i.e., ∆lHB, ∆lHC , ∆lHD, ∆lHE) can be
pproximated as

∆l = ∆l = ∆l = ∆l ≈ −l ′ sinα′
≈ −l ′ sinα (3)
HB HC HD HE HH HH

3
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Fig. 1. (a) Hourglass lattice truss structure. (b) Front view of the hourglass lattice truss structure.

Fig. 2. (a) Deformation diagram of the clamped oblique struts under a concentrated force, (b) equivalent resonator.

where lHH ′ represents the displacement of point H in the vertical direction, and α’ represents the inclination angle of the
truts after deformation. Within the elastic deformation regime, the relation between the axial deformation and the force
an be expressed as

∆lHB =
FHBlHB
EsAs

(4)

where lHB denotes the length of the struts, Es and As are the Young’s modulus and cross-sectional area, respectively. By
substituting Eqs. (2) and (3) into Eq. (4), the relation between the vertical deformation and the applied force on the truss
structure can be obtained

lHH ′ =
FlHB

4EsAs sin 2α
(5)

By representing the four struts system as two springs connected in series, the equivalent stiffness of each spring can
e derived by the Hook’s law

k′
=

F
2lHH ′

=
2EsAs sin 2α

lHB
(6)

Noting that since the actual hourglass truss structure (Fig. 1) consists of two identical four struts systems (Fig. 2(a)) in
two orthogonal planes [53], by representing the whole hourglass core structure as two springs connected in series, the
equivalent stiffness of the springs should be

k = 2k′
=

4EsAs sin 2α
lHB

(7)

2.2. Equivalent MDB model

By modelling the truss structure as a spring system, the metamaterial sandwich beam (MSB) as shown in Fig. 3 can be
represented as a metamaterial dual-beam (MDB) system attached with local resonators in the periodic manner as shown
in Fig. 4(a). Furthermore, the MDB is approximated as conventional metamaterial beam (CMB) in theoretical modelling
as shown in Fig. 4, and it is worth mentioning that the stiffness of spring and thickness of beam in Fig. 4(b) is equal to
the sum of two springs and beams in Fig. 4(a), respectively. The top and bottom face sheets have the same geometrical
4
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e

Fig. 3. Schematic of metamaterial sandwich beam (MSB) with hourglass lattice truss core.

Fig. 4. Model of (a) MDB, (b) CMB.

dimensions and denoted as Beam1 and Beam2, respectively. Based on the Euler–Bernoulli beam theory, the governing
quations for the free flexural vibration of the two beams can be written as follows:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= 0, EI

∂4w∗

∂x4
+ ρA

∂2w∗

∂t2
= 0 (8)

where w and w* denote the deflection of Beam1 and Beam2 shown in Fig. 4(a), respectively. A is the cross-sectional area
of the beams and I is the inertia moment with respect to the axis that perpendicular to x-axis. By focusing on the steady-
state harmonic response, one can assume w(x, t) = W (x)ejωt , w ∗ (x, t) = W ∗ (x)ejωt , where ω is the circular frequency.
Considering the n-th cell of the MDB as shown in the dashed box in Fig. 4(a), the displacement amplitudes of Beam1 and
Beam2 are written as

Wn(x) = An cos(βx) + Bn sin(βx) + Cn cosh(βx) + Dn sinh(βx)

W ∗

n (x) = A∗

n cos(βx) + B∗

n sin(βx) + C∗

n cosh(βx) + D∗

n sinh(βx)
(9)

where β4
= ρAω2/EI . The equation of motion of the n-th local resonator is

k[wn(xn, t) − yn(t)] + k[w∗

n(xn, t) − yn(t)] = mÿn(t) (10)

where yn(t) = Ynejωt is displacement of the resonator and Yn is the amplitude. The continuities of displacement, slope,
bending moment and shear force at the interface between (n-1)-th cell and nth cell require⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wn(0) = Wn−1(a)

W ′

n(0) = W ′

n−1(a)

EIW ′′

n (0) = EIW ′′

n−1(a)
EIW ′′′

n (0) + Fn = EIW ′′′

n−1(a)

W ∗

n (0) = W ∗

n−1(a)

W ∗
′

n (0) = W ∗
′

n−1(a)

EIW ∗
′′

n (0) = EIW ∗
′′

n−1(a)

EIW ∗
′′′

n (0) + Fn = EIW ∗
′′′

n−1(a)

(11)

where Fn =
mkω2

mω2−2k
[Wn(0) + W ∗

n (0)]. The transfer matrix of the coefficients vector can be obtained

ψn = [An, Bn, Cn,Dn, A∗

n, B
∗

n, C
∗

n ,D∗

n]
T

−1
(12)
ψn = Tψn−1 = K Hψn−1

5
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K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

−1 0 1 0 0 0 0 0

λ −1 λ 1 λ 0 λ 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 −1 0 1 0

λ 0 λ 0 λ −1 λ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(βa) sin(βa) cosh(βa) sinh(βa) 0 0 0 0

− sin(βa) cos(βa) sinh(βa) cosh(βa) 0 0 0 0

− cos(βa) − sin(βa) cosh(βa) sinh(βa) 0 0 0 0

sin(βa) − cos(βa) sinh(βa) cosh(βa) 0 0 0 0

0 0 0 0 cos(βa) sin(βa) cosh(βa) sinh(βa)

0 0 0 0 − sin(βa) cos(βa) sinh(βa) cosh(βa)

0 0 0 0 − cos(βa) − sin(βa) cosh(βa) sinh(βa)

0 0 0 0 sin(βa) − cos(βa) sinh(βa) cosh(βa)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

λ =
mkω2

(mω2 − 2k)EIβ3 (15)

For the infinitely periodic model, the Bloch’s theorem implies that ψn = ejqaψn−1, in which q denotes the Bloch wave
number. Therefore, the standard eigenvalue problem of transfer matrix T from Eq. (12) is obtained⏐⏐T − ejqaI

⏐⏐ = 0 (16)

here I is the 8×8 unit matrix.

.3. Finite element model

In order to validate the derived theoretical model that implies simplifying the truss core with lumped parameters,
finite element model of the metamaterial sandwich beam (MSB) is developed for comparison. For the infinitely long
odel, to obtain the band structure with FEM, the standard procedure is first developing the model of one unit cell,

hen applying the periodic boundary condition by using the Bloch’s theorem which gives Eq. (17), and finally seeking the
igenfrequencies of the general eigenvalue problem

un (r) = un−1 (r + R) e−ik·R (17)

here r is the general coordinate, un denotes the general displacement, the subscript n denotes the n-th cell, k is the
wave number vector, R is the lattice constant vector. In the study of this paper, only the flexural vibration of the sandwich
beam is considered. The problem is thus degenerated into a one-dimensional case, in which r is the horizontal direction
coordinate x, un defines the MSB deflection, k is the scalar wave number q, and R corresponds to the scalar lattice constant
a. However, the utilization of the Bloch’s theorem produces a set of complex valued constraint equations (Eq. (17)) which
is difficult to be handled by the commercial FEM package. To enable the utilization of common commercial FEM package
for the calculation of band structures, Åberg and Gudmundson [58] proposed a general solution to address the problem.
The key is to first express un (r) in following form

un (r) = Re (un(r)) + j · Im (un(r)) (18)

here the superscript Re and Im represent the real and imaginary components, respectively. Then, splitting complex
alued constraint equations into real and imaginary parts{

Re (un(r)) = Re (un(r + R)) cos (k · R) + Im (un(r + R)) sin (k · R)
(19)
Im (un(r)) = Im (un(r + R)) cos (k · R) + Re (un(r + R)) sin (k · R)

6
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Table 1
The material properties and geometric dimensions of the hourglass truss structure.

E (Gpa) ρ (kg/m3) l (mm) rc (mm) α (◦) m (kg)

210 7930 35.35 1 45 0.04

Fig. 5. ANSYS model of the hourglass structure with a lumped mass (a) without deformation (b) with deformation under an external force.

In the commercial software ANSYS, the above mentioned procedures can be implemented by using the CE function to
define constraint equations described by Eq. (19) for relating degrees of freedom of the nodes at the boundaries. Finally,
with the provided modal analysis function, by sweeping the wave number k (i.e., q in the present case), one obtains the
olution for the eigenfrequency. Plotting the solved eigenfrequency versus the wave number gives the band structure of
he sandwich metamaterial beam. Regarding the finitely long model, the procedure for obtaining the transmittance is
uite straightforward and there is no need to elaborate the details. In the following FEM simulations presented in this
tudy, 4-node shell element SHELL181 is used to model the face sheets, 3-dimensional 3-node beam element BEAM189
s used to model the struts, 2-node element COMBIN14 is selected to model the springs and 1-node element MASS21 is
elected to model the lumped mass in the truss core.

. Model validation

.1. Validation of the equivalent stiffness of the hourglass truss structure

The theoretical result for the equivalent stiffness of the hourglass truss structure is validated by FEM. The proposed
ourglass truss structure model is built in ANSYS as shown in Fig. 5(a). The ends of all the struts are clamped, a lumped
ass is added on the intersection of the eight oblique struts and an external unit force is applied on the lumped mass in
-direction. The relevant material properties and geometric dimensions are given in Table 1.
From the results of FEM as shown in Fig. 5(b), the displacement of the intersection of the eight struts under an external

nit force is 1.34×10−8 m. The equivalent stiffness in y-direction calculated is thus 3.73×107 N/m, and the result obtained
or 2k by Eq. (7) is also 3.73×107 N/m. Thus, the analytical result of the equivalent stiffness of hourglass truss structure is
onfirmed. It is worth mentioning that the equivalent stiffness of the oblique struts was derived by neglecting the bending
ffect under the assumption of small deformation. The bending of the strut in Fig. 5(b) looks non-negligible, only because
he displacement field is intentionally magnified to provide a clear illustration of the deformation of the struts. Since the
otal mass of the struts is small, a lumped mass is introduced to enlarge the band gap and tune it to the low-frequency
ange. Similar to the problem of a cantilever beam system, around the fundamental resonance, the equivalent mass of a
lain beam is approximately 0.24 times of its static mass. If a relatively large tip mass is introduced, the tip mass will play
he dominant role, and the equivalent mass of the plain beam itself becomes negligible. In our study, the lumped mass
s relatively much larger (about 6 times) than the mass of the struts. Therefore, the mass of the struts could be neglected
n the modelling.

.2. Validation of band structures of MSB

.2.1. Comparison of MDB & CMB models
To demonstrate the equivalence of metamaterial dual-beam (MDB) and conventional metamaterial beam (CMB) models

nder base excitation, band gaps of MDB and CMB are calculated and compared by using the TMM, together with the
7
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Fig. 6. (a) Band structures of MDB and CMB calculated by TMM, (b) transmittances of MDB and CMB calculated by FEM, (c) vibration mode of one
unit cell of the infinitely long MDB at 95 Hz calculated by TMM.

transmittances of the two finitely long models by FEM. The dimensions and material parameters used in the calculation
come from CMB in the published literature [59]. In the MDB model, the total stiffness of two springs and the total thickness
of two beams are equal to the spring stiffness and beam thickness of the CMB.

As shown in Fig. 6(a), apart from a set of solutions denoted as blue stars, the band gap of MDB agrees well with that
f CMB. Those solutions denoted as blue stars and termed as ‘‘S solution’’ represent the symmetric mode solutions when
wo beams move exactly in the opposite directions and the resonators keep stationary during vibration, which, however,
ill not appear when the beams are subjected to base excitation. Though the MDB model has the symmetric vibration
ode, under the given base excitation condition (i.e., the two beams of the MDB model are clamped to the same base) the
ymmetric vibration mode can never be stimulated. Only the asymmetric modes when the top and bottom beams have
xactly the same deflections will be stimulated. To help understand why the symmetric mode cannot be stimulated, for
implicity but without loss of generality, a 3-DOF system with the same symmetric characteristic is discussed in Appendix.
or the MDB model, the symmetric vibration mode of one unit cell of the infinitely long MDB is shown in Fig. 6(c). Those
olutions corresponding to the symmetric mode do not exist for the CMB with a single host beam. Furthermore, finite
lement models of the finitely long MDB and CMB are built in ANSYS to verify the predictions of the band gaps by TMM,
s shown in Fig. 6(b). A base excitation is applied at the clamped end of the MDB and the CMB, and the displacements at
he free ends are calculated. As expected, the transmittances demonstrate the existence of the band gap in the frequency
ange of about 90–122 Hz. Also, it is noted that the transmittances of the MDB and CMB are consistent. In addition, there
s no ‘‘S solution’’ in the transmittance results since the MDB is subjected to base excitation. Based on these results, we
an confirm that the CMB and MDB model are equivalent under base excitation.
8
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Fig. 7. (a) Band structure of the CMB by the TMM, (b) transmittance of the MSB by FEM with α = 25◦ , a = 160 mm; (c) band structure of the CMB
y the TMM, (b) transmittance of the MSB by FEM with α = 45◦ , a = 75 mm, rc = 1 mm, hf = 15 mm and hc = 75 mm.

The stiffness and mass of the local resonator are 1.2663 × 104 N/m and 0.0396 kg, respectively, which implies that
he natural frequency of the local resonator is 90 Hz. To ease the comparison of the band gap predicted by various
odels presented in the literature, non-dimensionalization methods can be employed to reveal the intrinsic characteristic
roperties of the band gap. One commonly used non-dimensionalized band gap width is defined as the quotient between
he band gap width and the natural frequency of the local resonator. In accordance with this definition, the dimensionless
and gap width for the case presented in Fig. 6(a) can be calculated as 0.36, which is smaller than 1.04 from the
etamaterial beam with multiple local resonators [22].

.2.2. Comparison of MSB & CMB models
Since we simplified the metamaterial sandwich beam (MSB) as the metamaterial dual-beam (MDB) by using the

quivalent stiffness of the hourglass truss core and we noted that the conventional metamaterial beam (CMB) and the
DB are equivalent under base excitation, we will further prove that the MSB can be represented by the CMB model.

f this can be proved, the internal complexity (such as, pyramid truss core and hourglass truss core) of the MSBs can be
ignificantly simplified and the existing theory and methods for the CMB can be utilized in the analysis of the MSB.
In the following validation, wood is selected to be the mother material. Band structure of the CMB model, representing

he MSB, is calculated by the TMM. Meanwhile, the transmittance of the finitely long MSB model is also calculated by
EM to compare with and verify the predicted band gap. Fig. 7(a) and Fig. 7(c) show the band structures of the CMB
odel with α being 25◦ and 45◦, respectively, in which the radius of struts rc is 1 mm, the thickness of face sheets hf is
5 mm and the thickness of core layer hc is 75 mm. The band gaps appear in the frequency ranges of 537–568 Hz and
151–1411 Hz, respectively. Fig. 7(b) and Fig. 7(d) show the transmittances of the MSB predicted by FEM. It is observed
he predictions of the transmittance and band gaps are in good agreement.
9
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Fig. 8. Vibration modes of the finitely long MSB under harmonic response (a) out of band gap frequency range, (b) within band gap frequency range
with α = 25◦ , a = 160 mm, rc = 1 mm, hf = 15 mm and hc = 75 mm.

Fig. 8(a) and (b) show the vibration modes of the finitely long MSB under harmonic response analysis for same
parameters as those used in Fig. 7(b), in which the former is the vibration amplitude outside the frequency range of
the band gap (580 Hz) and the latter is the vibration amplitude within the frequency range of the band gap (540 Hz). It
can be seen that the truss structures between the two face sheets have not only transverse component of motion in y-
direction, but also longitudinal motion in x-direction. Existence of these longitudinal vibrations can lead to some mismatch
between the analytical and simulation results. Several resonators appear to move outside the two face sheets during
vibration. In fact, the resonators are not truly penetrating the physical boundaries. The displacement field is magnified by
a scaling factor of 288023 in ANSYS to illustrate the elastic deformation clearly. Since the relative displacement between
the resonator and the host beam is magnified, while the geometric dimensions are at the true scale, the result becomes
visually distorted. Putting aside this issue, from Fig. 8, it can be observed that when the excitation frequency falls into
the band gap, the transverse displacement dramatically decreases along the host beam. In other words, the vibration of
the host beam is significantly suppressed.

To further demonstrate that the MSB can be represented by the CMB model, the band structure is also directly
calculated by FEM using an infinitely long model of the MSB. Fig. 9 shows the dispersion relations of the MSB with
hourglass lattice truss core computed by FEM compared with that of the CMB by TMM, and the material and dimension
parameters are the same as those from Fig. 7(d). It is concluded that the relative errors of the band gap between FEM
and TMM are acceptable, which verifies the effectiveness of the analytical model in-depth. Although the hourglass truss
structure has various vibration modes as shown by dotted lines in the figure, only the transverse mode in y-direction
plays the dominant role under base excitation.

To understand the different types of waves for the MSB which do not exist in the simplified CMB model, modal analysis
is conducted and the modes at four points P1, P2, P3 and P4 in Fig. 9 are shown in Fig. 10. At point P1, the dispersion branch
is associated with the transverse vibration mode as shown in Fig. 10(a) which implies the wave is flexural. In comparison,
Fig. 10 (b) and (c) show the torsional and longitudinal waves, respectively, for points P2 and P3. For point P4, the symmetric
ibration mode for the two face sheet beams is observed (Fig. 10(d)), which corresponds to the ‘‘S solution’’ in Fig. 5(c).
he complexity of the internal form of the MSB leads to various vibration modes. Though the torsional, longitudinal
nd symmetric modes do exist and could be excited given a particular excitation, only the transverse vibration mode
ominates under base excitation, which can be proved by the clear gap in Fig. 7(b) and (d), i.e., no other modes occur in
he gap.

From the results given above, it is confirmed that the oblique struts can be simplified as vertical springs in the proposed
odel and the MSB can indeed be approximated as the CMB. Thus, in the next section for the parametric study, the
nalytical results are obtained by using the CMB model to simplify the calculation process.

. Parametric study

The metamaterial sandwich beam (MSB) with hourglass lattice truss core has a complicated internal composition that

akes it multifunctional. The parametric study for sandwich structures is necessary to achieve specific properties in

10
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m

Fig. 9. Band structure of MSB calculated by FEM and band structure of CMB calculated by TMM with α = 45◦ , a = 75 mm, rc = 1 mm, hf = 15
m and hc = 75 mm.

Fig. 10. Vibration modes at points: (a) P1 , (b) P2 , (c) P3 and (d) P4 .
11



Z. Guo, G. Hu, V. Sorokin et al. Wave Motion 104 (2021) 102750

a
p

m
p
h
b
a

t
n
l
r
t
o
s

t
b
l
F
o
b
p
b

r
h
m
d
c

5

t
p

Table 2
Material properties of MSB.

Material Elastic modulus (GPa) Poisson’s ratio Density (kg/m3)

Wood 9 0.4 500

Aluminium 69 0.32 2700

structural design. Effects of hc , d, hf and rc on band structures of the MSB with different materials are investigated. Wood
nd Aluminium have been widely used in architecture, aerospace, marine and other engineering fields, and their material
roperties are given in Table 2, respectively [60,61].
As confirmed in the previous section, the MSB can be represented by the conventional metamaterial beam (CMB)

odel for the simplified theoretical analysis to obtain the band gaps using TMM. The results are compared with those
redicted from the transmittance of the MSB modelled by FEM, as plotted in Fig. 11, where hc is 75 mm, while rc and
f are varied. The corresponding results are presented in the three sub-figures, respectively. It is noted that d is changed
y varying α. It is found that for the wood material, the results by the TMM for the CMB model and FEM for the MSB
re more consistent than the results for the aluminium material. In addition, increasing rc , the inconsistency between the

two models become more obvious. There are a few reasons for the band gaps of the MSB obtained by FEM to be lower
than those from the analytical results for the CMB model by TMM. First, increasing rc implies increasing mass of the truss
hat inevitably increases the effective mass of the resonators and decreases their natural frequency, which, however, is
eglected in the analytical model. Second, there exists a relative displacement between the struts of every unit cell which
eads to coupled bending–twisting modes that implies decreasing the overall stiffness of the truss structure. However, the
elative errors between the two models are still lower than 3% in the relatively high frequency ranges. This data proves
hat the proposed model of the MSB is applicable for different materials. The location of the band gaps mainly depends
n the Young’s modulus of the material. The smaller the Young’s modulus, the lower the band gap frequency. In addition,
maller d leads to wider band gaps but in a higher frequency range.
It should also be mentioned that, for the results shown in Fig. 11, hf is increased along with rc . It is easily understood

hat in the CMB, the smaller the thickness of the host beam, the wider the frequency band gap. However, the difference
etween the MSB with hourglass lattice truss core and the simplified CMB model is that for the former, there are some
imitations for the relation between rc and hf . Fig. 12 shows vibration of the MSB from the harmonic response analysis in
EM under base excitation, and the structural parameters are the same as those of Fig. 7(b), except that hf is 5 mm. It is
bserved that there exists a severe twisting of the two face sheet beams about the longitudinal axis if they are very thin,
ecause the overall bending stiffness of the struts is not negligibly small compared to the thin face sheets. The twisting
henomenon will certainly increase the inconsistency between the MSB model using FEM and the simplified CMB model
y TMM. Therefore, hf should be increased as rc increases for obtaining sensible prediction of the band gaps.
Fig. 13 shows the effect of hc on band gaps of the wood and aluminium MSBs in which rc , hf and a are 1 mm, 15 mm,

75 mm, respectively. We note that hc is varied by changing α and length of the strut, i.e., hc=2lsin α. As hc increases from
20 mm to 150 mm, it is noted that the band gaps for the wood and aluminium MSBs first move to the higher frequency
ranges and then decline a bit with hc continuously increasing. The widths of the band gaps are first broadened, reach
the maximum and then decline a bit. It can be concluded from Eq. (7) that the equivalent stiffness is first increased and
then decreased as hc increases, since both α and lHB are changing, which makes the resonant frequency increase first and
decline later. According to [34], the ending frequency of LR band gap is given as ωeL = ωr

√
(1 + m/2ρAa), where ωr is

the natural frequency of the resonators, and the width of the band gap is also directly related to ωr . Thus, by tuning hc
reasonably, appropriate band gaps can be obtained.

Fig. 14 shows the effect of rc on the band gaps of the wood and aluminium MSBs in which α, hc , hf and d are 45◦,
75 mm, 20 mm and 75 mm, respectively. It is noted that with the increase of rc , the band gaps of both wood and aluminium
MSBs move to the higher frequency range, and the band gap widths become larger. This is because increasing rc inevitably
increases the equivalent stiffness of the hourglass truss core, which increases the natural frequency of the resonators.

Fig. 15 shows the effect of hf on band gaps of the MSBs in which α, hc , rc and d are 45◦, 75 mm, 1 mm and 75 mm,
espectively. It is noted that with other parameters fixed, increasing hf will weaken the wave attenuation in the MSB. As
f increases, the widths of the band gaps of MSBs become narrower because they are directly related to the ratio of the
ass of the resonators to the weight of the host beams [62]. The locations of band gaps will not move since they mainly
epend on the natural frequency of the resonators, while the equivalent stiffness and lumped mass do not change in this
ase.

. Conclusions

Though the research in the existing literature has already proposed sandwich beam based metamaterials, most of
hem only considered sandwiches with homogenized cores and the local resonators were often modelled with lumped
arameters. This study has proposed a novel metamaterial sandwich beam (MSB) using truss core sandwiches. The local
12



Z. Guo, G. Hu, V. Sorokin et al. Wave Motion 104 (2021) 102750

m

r
r
c
i
c
t
b
a
i
a

Fig. 11. Band gaps of CMB and MSB with different materials with (a) rc = 0.5 mm, hc = 75 mm hf = 8 mm, (b) rc = 1 mm, hc = 75 mm, hf = 15
m, and (c) rc = 2 mm, hc = 75 mm, hf = 20 mm.

Fig. 12. Vibration modes of the MSB under harmonic response analysis with α =25◦ , a = 160 mm, rc = 1 mm, hf = 5 mm and hc = 75 mm.

esonators are realized using the readily existed hourglass truss structures. The proposed MSB is expected to be a more
ealistic model. A methodology is developed for modelling the proposed MSB model. The truss structure loaded with a
oncentrated mass is simplified to a spring–mass–spring system (i.e., ‘local resonator’) for which the equivalent stiffness
s derived using Hook’s law. It is found that the equivalent stiffness of the truss structure is dependent on the length, the
ross-sectional area and the inclination angle of the struts. Based on the lumped parameterization of the truss structure,
he MSB is reduced to the metamaterial dual-beam (MDB) model and then represented by the conventional metamaterial
eam (CMB) model. This equivalent representation method is validated by FEM through both a transmittance analysis and
band structure analysis. The effects of the material and geometric parameters on the band structures of the MSB are

nvestigated by a parametric study. It is discovered that with the increase of hc , the band gaps move to higher frequencies
nd are widened until reaching a maximum, since the equivalent stiffness of the ‘local resonator’ is first increased then
13
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Fig. 13. Effect of hc on band gaps of the MSBs with a = 75 mm, rc = 1 mm and hf = 15 mm.

Fig. 14. Effect of rc of struts on band gaps of the MSBs with α =45◦ , a = 75 mm, hc = 75 mm and hf = 20 mm.

Fig. 15. Effect of hf on band gaps of the MSBs with α = 45◦ , a = 75 mm, hc = 75 mm and rc = 1 mm.

ecreased as hc increases. Increasing rc broadens the band gaps and makes them move to higher frequencies, because
ncreasing rc increases the equivalent stiffness, thus the natural frequency of the ‘local resonator’. On the contrary, the
ncrease of hf makes the band gaps narrower, due to the decrease of the mass ratio between the ‘local resonator’ and the
ost beam. In conclusion, this work provides a roadmap of modelling of lightweight lattice sandwich beams with complex
ore structures and presents guidelines for applications of such beams to control wave propagation.
14
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Fig. A.1. Diagram of a 3-DOF system with a symmetric vibration mode.
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ppendix

Fig. A.1 shows the schematic of a 3-DOF system that is featured with the mirror symmetry characteristic. This 3-DOF
ystem has a symmetric vibration mode. For the free vibration of the 3-DOF system as shown in Fig. A.1, the governing
quations can be written as:⎧⎪⎨⎪⎩

m1ẍ1 + k1x1 + k2 (x1 − x2) = 0

m2ẍ2 + k2 (2x2 − x1 − x3) = 0

m1ẍ3 + k1x3 + k2 (x3 − x2) = 0

(A.1)

ithout loss of generality but just to facilitate the following calculation, we assume that m1 = m, m2 = m/2, k1 = k,
2 = k/5. x1, x2 and x3 denote the displacements of the three DOFs, respectively. The governing equations can be
e-expressed in the matrix form as:

mẍ + kx = 0 (A.2)
15
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⎤⎥⎥⎥⎦.

The natural frequencies of the 3-DOF system can be obtained through a modal analysis.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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5
(
5 −

√
5
)

5
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ω2 =
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30
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m

ω3 =

√
5
(
5 +

√
5
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5

√
k
m

(A.3)

For the first vibration mode, we can obtain X(1) = X (1)
1

⎡⎢⎣1

1 +
√
5

1

⎤⎥⎦. It can be noted that m1 and m3 always have the exactly

same motion, and m2 undergoes in-phase motion. For the second vibration mode, we have X(2) = X (2)
1

⎡⎢⎣1

0

−1

⎤⎥⎦. It can be

seen that m2 keeps stationary, while m1, m3 are doing mirror movements with the same displacement amplitude but in
opposite directions. The second vibration mode is the aforementioned symmetric vibration mode. For the third vibration

mode, it can be obtained that X(3) = X (3)
1

⎡⎢⎣1

1 −
√
5

1

⎤⎥⎦. Similar to the first vibration mode, m1, m3 have the exact same

motion. The difference is that m2 undergoes out-of-phase motion. For mass normalized mode shapes, we can derive that
X (1)
1 =

1√
5+

√
5
√
m
, X (2)

1 =
1

√
2
√
m

and X (3)
1 =

1√
5−

√
5
√
m
.

After determining the natural frequencies and vibration modes of the 3-DOF system, we now proceed to the forced
vibration analysis of the 3-DOF system. The governing equations can be written as:

mẍ + kx = f (A.4)

e assume a unified base excitation which means that m1 and m3 are connected to the foundations with the same
isplacement. The base excitation is assumed to be controlled at a constant acceleration level:

f =

⎡⎢⎢⎣
−mAcc cos (ωt)

−
1
2
mAcc cos (ωt)

−mAcc cos (ωt)

⎤⎥⎥⎦ (A.5)

Using the modal superposition method, the solution to Eq. (A.4) is assumed as x (t) = Xq (t) in which X =[
X(1) X(2) X(3)] and q (t) =

[
q1(t) q2(t) q3(t)

]T . Substituting the assumed solutions into Eq. (A.4) and using the
orthogonality relation yields the modal governing equations:

q̈ (t) +

⎡⎢⎣ω2
10 0

0 ω2
2 0

0 0 ω2
3

⎤⎥⎦ q (t) = Q (A.6)

where Q = XT f is the vector of the modal excitation force. It can be easily derived that the value of the second element in
the vector Q is always 0. Therefore, it can be concluded that under the unified base excitation we defined, the contribution
of the second mode of the 3-DOF system, i.e., the symmetric mode, is always 0, which means that it cannot be excited.
Note that if the base excitation is changed, for example, the top and bottom masses i.e., m1 and m3, are connected to
different foundations undergoing different displacements, then it will be found that the second element in the vector Q
is no longer 0, indicating that the symmetric mode is stimulated.
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